



## **Modelling of High Harmonic Generation**

We offer student projects focused on the numerical modelling and theory of High Harmonic Generation (HHG) in gases. This process occurs when an intense laser field interacts with a gaseous target, producing a non-linear response that generates secondary XUV radiation. The result is the formation of ultrashort light pulses lasting on the order of attoseconds ( $10^{-18}$  s), which is the natural timescale for electron motion in atoms and molecules.

Our computational model captures all key aspects of HHG: (1) non-linear propagation of a laser pulse, (2) microscopic quantum-mechanical response of a single atom in the laser field, and (3) propagation of the generated XUV radiation. The model allows for studying the entire process as a whole or focusing on specific subproblems.

The exact project assignment will be defined based on the student's interests and discussions with the supervisor. Possible directions include:

- Applying the model to specific projects in collaboration with experimental groups at the Department of Laser Physics and Photonics and/or at the ELI Beamlines laser centre (part of ELI ERIC)
- Developing new code functionalities (e.g. implementing advanced numerical methods, improving physical models, or adding post-processing tools)
- Theoretical studies of related physical phenomena